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Dimension reduction (DR) is a useful preprocessing technology for hyperspectral image (HSI) classifica-
tion. This paper presents an HSI DR method named superpixel-based spatial-spectral dimension reduc-
tion (SSDR), which integrates the spatial and spectral similarity. The HSI is first segmented into non-
overlapping superpixels, where pixels belonging to the same superpixel have strong correlations, and
should be preserved after DR. We then apply the superpixel-based linear discriminant analysis (SPLDA)
method, which learns a superpixel-guided graph to capture the spatial similarity. Pixels from the same
label also have strong spectral correlations; thereby, we also construct a label-guided graph to explore
the spectral similarity. These two graphs are finally integrated to learn the discriminant projection. The
classification results on two widely used HSIs demonstrate the advantage of the proposed algorithms
compared to the other state-of-the-art DR methods.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Hyperspectral images (HSIs) can be simultaneously acquired
with diagnostic information in the spectral domain and land-cover
distribution information in the spatial domain. Compared with
multispectral images, HSIs have a better ability to distinguish dif-
ferent materials, which has been extensively exploited in many ap-
plications, such as classification [1-3], clustering [4], target detec-
tion [5,6], data unmixing [7-9], anomaly detection [10], and change
detection [11,12]. Besides, denoising is an active research topic as a
preprocessing technology of HSI applications [13]. Among these ap-
plications, classification has attracted a lot of attention in the last
decades [14], e.g., in military surveillance, urban and rural plan-
ning, land-use and land-cover monitoring, and environmental dis-
aster assessment [15]. However, HSI classification becomes a chal-
lenging task because of the high dimensions and the limited num-
ber of training samples, which can cause the Hughes phenomenon
(the curse of dimensionality) [16,17]. In the meantime, the high di-
mensionality has brought great pressure to the transmission and
storage, which slows down the efficiency of the data processing
and increases the computational burden. Therefore, DR has become
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the key preprocessing technology in many information processing
tasks [18-21].

As a preprocessing step before classification, hyperspectral di-
mension reduction (DR) technology mainly aims at extracting fea-
tures from the original image for classification, without sacrificing
important information. It can then search for a low-dimensional
data space to effectively express the high-dimensional data char-
acteristics. DR helps to: (1) eliminate the redundancy between fea-
tures and improve the computational efficiency; (2) ameliorate the
statistical ill-posed problem caused by the limited number of sam-
ples; and (3) prevent the Hughes phenomenon and improve the
classification accuracy.

Popular DR techniques can be generally categorized as feature
selection [22-24] and feature extraction methods. Feature extrac-
tion methods are dominant in DR, and can be categorized into
local- and global-based methods. Local methods are designed to
retain the structural information of local regions, whereas the
global methods need to learn the optimal projection under the
constraint of all the sample pairs. Local methods include local lin-
ear embedding (LLE) [25], local discriminant embedding (LDE) [26],
regularized LDE (RLDE) [27], block sparse graph-based discriminant
analysis (BSGDA) [28], locality preserving projections (LPP) [29],
and so on. LLE is a nonlinear DR algorithm, which is reconstructed
by neighboring samples, using the affine reconstruction coefficient
to characterize the local adjacency relationship of the sample set.
LDE tries to embed the submanifold of each class by optimiz-
ing a unified problem. RLDE extends LDE by adding constraints
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that preserve the data diversity. Sparsity graphs have also been
applied in the classification of HSIs. For instance, BSGDA is one
of the sparsity-preserving graph construction methods, which in-
corporates class-label information for the supervised discriminant
analysis. LPP learns to optimally preserve the neighborhood struc-
ture of the input data via a linear projective map. Linear discrim-
inant analysis (LDA) [30], principal component analysis (PCA) [31],
and isometric feature mapping (ISOMAP) [32] are typical global DR
methods. PCA is one of the most popular DR algorithms, which
searches for an orthogonal projection to maximize the variance of
the input feature that maintains the overall distribution of the data
characteristics during the DR process. LDA aims at finding a pro-
jection by maximizing the between-class covariance while mini-
mizing the within-class covariance, so that the similar samples are
closer and the heterogeneous samples are further separated in the
subspace. ISOMAP is based on classical multidimensional scaling
(MDS), and it explores the inherent geometric structure of the data
set by establishing the geodesic distances between all the pairs of
data points. These methods can also be generally classified into su-
pervised (LDA, LDE, RLDE, and BSGDA), unsupervised (LLE, ISOMAP,
PCA, and LPP), and semisupervised methods, according to the a pri-
ori information [33-35].

To sum up, most of these methods are spectral-based, and they
only take the spectral information into account [36,37]. However,
the spectral information of one specific pixel from one class can
be easily mistaken for that of pixels from other classes, which may
cause the classification results to appear very noisy [38]. As we
know, there is a high probability that nearby pixels will have sim-
ilar spectral signatures and belong to the same material. Thereby,
many HSI classification methods utilize a combined spatial-spectral
prior, and have achieved state-of-the-art results [39,40]. From one
aspect, the spatial information can be utilized in the classification
stage. For example, Benediktsson et al. [41] and Li et al. [42] used
extended morphological profiles to explore the spatial information;
Fang et al. [38] incorporated multiple kernels into a support vec-
tor machine (SVM) classifier, which accounts for the exploration of
the spectral and spatial information within superpixels; and Zhou
et al. [43] proposed two spatial-spectral composite kernel extreme
learning machine (ELM) classification methods, which inherit the
advantages of ELM. From another aspect, the postprocessing pro-
cedure can also include spatial information exploration, as intro-
duced by Fang et al. [44] and Jiay et al. [45].

Several spatially regularized methods have also been introduced
to DR. Fang et al. [46] improved the LLE method by using a new
similarity measurement based on both the spectral and spatial fea-
tures. In addition, the spatial-spectral contextual similarity mea-
sure [47] was proposed to preserve the pixel patchwise similarity
between the observed pixels and their spatial neighbors. A spa-
tial regularizer was adopted by Ma et al. [48] to enhance the simi-
larity of the manifold coordinates of spatially surrounding pixels.
Feng et al. [49] used heterogeneous and homogeneous spectral-
spatial neighbors of hyperspectral pixels to define the discrim-
inate spectral-spatial margins (DSSMs), and explored both local
and global information of hyperspectral data by maximizing the
DSSM of hyperspectral data and casting a low-rank representa-
tion (LRR) regularizer. Huang et al. [50] proposed an unsupervised
dimensionality reduction algorithm called spatial-spectral mani-
fold reconstruction preserving embedding (SSMRPE), which utilizes
the spatial-spectral combined distance (SSCD) for selecting effec-
tive spatial-spectral neighbors of HSI pixels to construct a graph.
In [27], Zhou et al. proposed a local pixel neighborhood preserv-
ing embedding (LPNPE) algorithm, which considers that the pixels
from one fixed-size window neighbor will have strong similarity
and can be adopted to learn a spatial graph embedding. However,
the fixed-size window cannot capture the spatial correlations ef-
fectively. It seems that a shape-adaptive window has a better abil-

ity to exploit the spatial context, and can be adapted according to
the different structures.

In view of this, this paper proposes the superpixel-based linear
discriminant analysis (SPLDA) method to construct a superpixel-
guided graph, where the superpixel spatial regularizer constrains
the spatial neighbors with high spectral similarity to preserve the
spatial similarity after DR. Moreover, the superpixel-based spatial-
spectral dimension reduction (SSDR) method is proposed to in-
tegrate the superpixel-guided graph with the label-guided graph
for HSI DR. Specifically, the simple linear iterative clustering (SLIC)
[51] superpixel segmentation algorithm is first utilized to segment
the HSI into non-overlapping superpixels, and the superpixel-
guided graph is then constructed to capture the spatial similarity.
Subsequently, a label-guided graph is constructed to preserve the
spectral similarity from the same labels. Finally, the two graphs
are integrated to learn a discriminant projection. This work is an
extension of our previous conference work [52]. Compared to the
spectral-related work, i.e., RLDE, SPLDA learns a superpixel-guided
graph with spatial information. SPLDA was proposed on the basis
of the LPNPE method by exploring the spatial relationship in the
adaptive superpixels, rather than the fixed-size window in LPNPE.
Furthermore, SSDR is an extension of SPLDA that integrates the
superpixel-guided and label-guided graphs to utilize the spatial-
spectral information. The main contributions of the proposed algo-
rithms are as follows:

(1) A superpixel-guided graph is learned to preserve the spatial
similarity. Compared to a fixed-size window based graph,
the superpixel-guided graph is shape-adaptive and more ef-
fective at exploiting the spatial context.

(2) The superpixel-guided graph and the label-guided graph are
integrated to simultaneously explore the spatial and spectral
similarity, to learn a discriminant projection.

(3) The experimental results obtained with two HSI data sets
confirm the advantage of the proposed methods for small
sample size classification.

The rest of this paper is organized as follows. In Section 2, we
briefly review the theories of SLIC superpixel segmentation, graph
embedding (GE), LDA, and LDE. Detailed descriptions of the pro-
posed methods are provided in Section 3, and Section 4 provides
the experimental results and discussions. Finally, our conclusions
are drawn in Section 5.

2. Related works
2.1. Simple linear iterative clustering (SLIC) superpixel segmentation

Pixels within a local domain are likely to share similar spectral
curves, which means that local domains have the property of ho-
mogeneity. In order to exploit the spatial neighborhood structure,
superpixel segmentation is introduced to generate homogeneous
regions. Compared to a fixed-size local region, such as a square
window, superpixel segmentation can segment images adaptively,
according to the spatial features. Moreover, the spectral and spatial
prior information can be taken into account through the spectral
constraint of the superpixel regions.

SLIC, as proposed by Achanta et al. [51], is one of the most
widely used segmentation methods, due to its simplicity and ef-
fectiveness. SLIC adopts a K-means clustering approach to generate
superpixels. To start SLIC, in detail, the color space of the image
should first be transformed into the CIELAB color space. The k ini-
tial cluster centers are then distributed on a regular grid spaced S
pixels apart, where the grid interval is \/N/K, N is the total num-
ber of pixels of the image, and K is the number of superpixels set
in advance. The centers are moved to the lowest gradient position



140 H. Xu, H. Zhang and W. He et al./ Neurocomputing 360 (2019) 138-150

in a 3 x 3 neighborhood, in order to avoid centering a superpixel
on an edge or a noisy pixel.

To speed up the algorithm, SLIC limits the search region to
2S x 28, instead of the whole image, which can significantly reduce
the number of distance calculations, resulting in a speed advantage
compared to conventional K-means clustering.

The distance measure D between cluster center Cj, and pixel i is
formulated as follows:

diap = v/ (e — 1% + (@ — @)% + (by — b;)?
dyy = v/ (X — %)% + (Vi — ¥i)?

N2
D=, [(di)? + <§y> m2,

where dyg;, is the color distance and dyy, is the position distance.
m balances the relative importance between the color similarity
and spatial proximity. As m gets bigger, the resulting superpixels
become more compact and have a lower area to perimeter ratio.
As m gets smaller, the resulting superpixels adhere more tightly to
image boundaries, but have a less regular size and shape [51].

According to D, each pixel can be associated with the nearest
cluster center. Therefore, SLIC updates the new cluster center loca-
tion and then computes the residual error, until convergence.

2.2. Local discriminant embedding (LDE)

The traditional DR methods can be unified into a common
graph embedding framework for DR [53], which provides an undi-
rected weighted graph to describe the geometric properties of
the data set. We begin by defining the notation and the prob-
lem statement. Vectors are written in lowercase and matrices are
shown in capitals. For instance, x stands for a vector and X rep-
resents a matrix. Specifically, for data X = {x{,x5,...,Xn} € R™™,
where x;eR" denotes the ith vertex with n features, we let W
be the weight matrix, with Wj; standing for the distance between
vertices x; and x;. The key point of graph embedding is to find
a projection which can preserve the similarity between vertices,
measured by the weight matrix graph W. We assume that the pro-
jection matrix Pe R"*9(d «n) is expected to transform the data X
into the low-dimensional space by a linear function, i.e.Y = PTX.
Y ={y1.¥2.....¥m} is the low-dimensional embedding of all the
data. The objective function of the graph embedding is then de-
fined as:

P* = argmin Y IPTX; — PTX; | W, 2)
PTXXTP=I 7

where the constraint PPXXTP = I removes an arbitrary scaling fac-

tor in the embedding. According to Yan et al. [53], (2) can be de-

rived as follows:

P* = argmintr(P"XLX"P)
PTXXTP=I

tr(PTXLXTP)

tr(PTXXTP) ’

where L =D — W is the Laplacian matrix [54], and D is a diagonal

matrix with the sums of the ith row of Wj; by Dy = 3°;Wj;. The

optimal projection P* = [pq, pa,....pg] that minimizes the objec-
tive function is given by the minimum eigenvalue:

XIXTpy = 1aXX"py. (4)

(3)

= argmin

LDE is conducted under the graph embedding framework, and
it tries to learn a label-guided graph. In effect, LDE seeks to dis-
sociate the submanifold of each class from one another [26]. The
procedure of LDE can be characterized by the following three steps.

Firstly, the label-guided neighborhood graph construction. Two
graphs are constructed, i.e., the within-class graph G, and the
between-class graph G;. To construct Gy, for each pair of points x;
and x;, an edge is added between them if they are from the same
class and x; is the k-nearest neighbor of x;. To construct Gy, an
edge is added if x; and x; are from different classes and x; is the
k-nearest neighbor of x;.

Secondly, the affinity weight matrix computation. To compute
the affinity matrix Wy of Gy, each element w,, ij of Wy, is the
weight of the edge between x; and x;, and is defined as:

Wyij = exp[—[Ix; — x;|1?/t]. (5)

Similarly, the affinity weight W, of G, is computed in the same
way.

Finally, the projection vector optimization. The objective func-
tion of LDE is given as follows:

tr{P"XL,XTP}
tr{PTXL,XTP}"
where L, = D, — W, is the between-class graph Laplacian matrices,
Lw =Dy — W, is the within-class graph Laplacian matrices, and
Dp(Dw) is a diagonal matrix whose entries are column sums of
Wb(Ww)-

arg min

(6)

2.3. Linear discriminant analysis (LDA)

LDA [30] constructs a within-class scatter matrix and a
between-class scatter matrix. The within-class scatter matrix Sy
characterizes the intraclass compactness, while the between-class
scatter matrix S, describes the interclass separability, which are
shown as follows:

C ng
S, = Z Z(Xlgk) - I’L(k))(xi(k) — oyt 7)
k=1 \i=1
C
Sp=_ m(u® —pwy(u® — ', (8)
k=1

where xi(k) is the ith sample in the kth class, ¥ is the mean of
the kth class, n; is the number of samples in the kth class, and ©
is the mean vector of the entire training set.

To enhance intraclass compactness and interclass separabil-
ity, LDA seeks the projection direction in which the ratio of the
between-class covariance to within-class covariance is maximized.
The optimal projection matrix P can be obtained with the follow-
ing optimization problem:

tr(PTS,P)

tr(PTS,P)
tr(PTS,P)

tr(PT (S, + Sw)P)’

where S, + Sy = XXT.

P = argmin
p

(9)

= argmin
p

3. Spatial-spectral dimension reduction

In this section, we first present the SPLDA method, which builds
a superpixel-guided graph to exploit the spatial information. SPLDA
utilizes the prior assumption that pixels from the same super-
pixel have strong correlations, and tries to find an optimal pro-
jection which can preserve the local homogeneity. Subsequently,
we build a label-guided graph to learn the spectral similarity. The
proposed SSDR integrates the superpixel-guided graph and label-
guided graph to simultaneously capture the structural similarity
underlying the spectral and spatial dimensions.
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Fig. 1. The generation process for superpixels in an HSIL.

3.1. The generation process for superpixels in the HSI

Differing from single-band gray or three-band color images,
HSIs usually have tens or hundreds of spectral bands. On this basis,
applying SLIC to an HSI directly will result in low computational
efficiency. Hence, PCA is first utilized to extract the first three prin-
cipal components of the HSI as the input data. The input image is
then segmented into K homogeneous superpixels, with K set in ad-
vance. Finally, the location indices of each superpixel boundary are
mapped to the original HSI space to generate the non-overlapping
3-D superpixels [38]. The flowchart of superpixel generation is il-
lustrated in Fig. 1.

3.2. Superpixel-based linear discriminant analysis (SPLDA)

The HSI image can be denoted as X = [x1,...,xy], with X; RV,
and M is the number of pixels. Y = [y1,¥,...,yu] stands for the
dimension-reduced points, with Y = PTX. The HSI is generated into
K superpixels with different shapes and sizes via SLIC. Considering
one sample x;, the superpixel neighboring pixels corresponding to
x; are represented as xfj) (j=1,2,...,k;), where k; stands for the
pixel number in one superpixel. For each pixel x;, we can obtain
the superpixel-guided graph Wl-,-j to capture the similarity between

x; and xi(j) in the same superpixel:

_ C_ W2
W, = exp{=yollxi — x|} (10)

Y5 expl—yollxi — x7 12}

The pixels from the same superpixel will have close similarity
[55], and this relationship should be retained after the DR. In other
words, the close relationship of the pixels from the same super-
pixel should remain after DR. To preserve this intrinsic graph, the
optimization model is formulated as:

M ki

Pypt = arg min ly: — 9 12W; (11)
Dpt PTXXT P ; ; 1 i lll

where the constraint PTXXTP =1 is adopted to scale the embed-
ding. The objective function (11) can be easily converted to:
Popr = arg mintr(PTS;PAP)

PTXXTP=I
tr(PTSPIPAP)

= argmin —————,
tT(PTSgPLDAP)

(12)

where  SSPLDA — ™M, (Z?"Z1 Wi, (x,-—xl.(j))(x,- —xl.(j))T) is  the
superpixel-guided scatter matrix, and $;"P4 =XXT is the dis-
similarity scatter matrix. Similar to LDA, the objective model
(12) tries to find a discriminant low-dimensional space by mini-
mizing the superpixel neighborhood interclass preserving scatter
while, at the same time, maximizing the distance between the
means of the samples. After being transformed into a projection

space, data points in the same superpixel maintain their intrin-
sic neighborhood relations, whereas neighboring superpixels no
longer stick to one another. A schematic diagram of SPLDA is
provided in Fig. 2.

Eq. (12) can be easily solved by the generalized eigenvalue de-
composition approach:

SwPApg = AgSy P pg. (13)

where X, is the dth eigenvalue, and the projection matrix is P =
[p1,p2.---, pql. where py is the eigenvector corresponding to the
dth smallest nonzero eigenvalue.

3.3. Spatial-spectral dimension reduction (SSDR)

As mentioned in Section 3.2, SPLDA can fully use the spatial in-
formation in the HSI and find a discriminant projection. However,
SPLDA fails to take the label information of the samples into ac-
count. Inspiringly, as introduced in Section 2.2, the label-guided
graphs, i.e., Gy and G, are constructed, and the related affinity
weights are Wy, and W), respectively. The proposed SSDR tries to
integrate the superpixel-guided graph and label-guided graph to
utilize the spatial and spectral similarity concurrently.

Firstly, on the basis of the label-guided weight matrices W,,
and W, we extend LDE to regularized LDE (RLDE) and reformu-
late (6) as the LDA version:

tr(PTSFLPEP)

arg min ———+————=,
tr(PTSRIPEP)

(14)
where SFPE = [(1 — a)Sw + reg] With Sy = XLwXT, Jreg = 3" Sw,ij»
and SFIPE = X1, XT. The regularization term Jreg = 3" Sy,j is a di-
agonal matrix, which can overcome the singularity when training
samples are limited [27].

Secondly, by setting SPR = [(1 — B)SIPA + BSKIPE] and SPPR =
[(1 - B)SSPLPA + BSRIDE] - we fuse SPLDA (12) and RLDE (14) into
one objective function:

tr(PTSSSPRP)

arg min ———&t———=,
tr(PTSISfDRP)

(15)
in which « and 8 are two tradeoff parameters that control the rel-
ative importance of the spatial information, spectral information,
and regularization terms with 0 <¢, 8 <1. In this way, the super-
pixel spatial structure and the labeled spectral information are in-
tegrated to learn a discriminative low-dimensional subspace. The
optimization (15) can be efficiently solved by the minimum eigen-
value solution to the generalized eigenvalue problem (4).

4. Experimental results and discussions

In order to demonstrate the effectiveness of the proposed algo-
rithms, we conducted experiments on two widely used HSI data
sets. This section includes three parts: (1) an introduction to the
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Fig. 2. Schematic diagram of SPLDA.

experimental data sets and the experimental setup; (2) a param-
eter analysis for the proposed methods; and (3) a quantitative
assessment of the proposed algorithms for HSI classification by
a comparison with other existing state-of-the-art methods: PCA
[31], local Fisher discriminant analysis (LFDA) [56], nonparametric
weighted feature extraction (NWFE) [57], LDE [26], RLDE [27], and
LPNPE [27].

4.1. Experimental data sets and setup

(1) The Indian Pines data set: This data set was acquired by the
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor in
1992 over the Indian Pines test site in North-western Indiana. The
image contains 145 x 145 pixels at a spatial resolution of 20 m. The
AVIRIS sensor generates 220 bands across the 0.4 - 2.5 um spectral
range. In total, 200 bands of the image were retained for the ex-
periments after removing the 20 water absorption bands. The total
number of labeled samples was 10249 from 16 classes. The false-
color image (R:50, G:27, B:17) is shown in Fig. 7(a).

(2) The Pavia University data set: This data set was acquired by
the Reflective Optics System Imaging Spectrometer (ROSIS) sensor.
It is of a spatial size of 610 x 340 pixels and contains 103 spectral
bands, after removing the noisy and water absorption bands. The
available ground truth contains nine classes. The false-color image
(R:102, G:56, B:31) is shown in Fig. 10(a).

This paper utilizes the overall accuracy (OA), average accuracy
(AA), and kappa coefficient to evaluate the effectiveness of the
proposed SPLDA and SSDR algorithms. Two simple classifiers were
adopted to evaluate the DR performance: k-nearest neighbor (KNN)
and SVM. The parameters in SVM, i.e., the radial basis function
(RBF) kernel parameter and the penalty factor, were selected by
10-fold cross validation. We compared the proposed SPLDA and
SSDR algorithms with six representative DR methods. The compar-
ison algorithms were as follows, among which the first five meth-
ods are spectral feature based DR methods, and the last method
takes the spatial structure information into consideration.

(1) Principal component analysis (PCA): a classic method of
global DR [31], which aims to find a subspace of orthogo-
nal projections in accordance with maximizing the variance
of the input feature matrix.

(2) Local fisher discriminant analysis (LFDA) [56]: uses lo-
cal neighborhood information to construct the weighted
between-class and within-class scatter matrices, and then
finds a more discriminative subspace.

(3) Nonparametric weighted feature extraction (NWFE) [57]: is
based on a nonparametric extension of the scatter matrices.
The main idea is putting different weights on each sample

to compute the “weighted means”, and defining new non-
parametric between-class and within-class scatter matrices
to obtain more features.

(4) Local discriminant embedding (LDE): a manifold learning
method [26], which attempts to maintain the original neigh-
borhood relations for the neighboring data points of the
same class and exclude neighboring points of different
classes after the embedding.

(5) Regularized LDE (RLDE) [27]: extends LDE by adding con-

straints that preserve the data diversity, and overcomes the

singularity in the case of limited training samples.

Local pixel neighborhood preserving embedding (LPNPE)

[27]: the method takes the spatial information that mini-

mizes the scatter matrix in a fixed neighborhood window

into consideration, and maximizes the total scatter matrix.

(6

—~

The parameters of these methods were set as suggested in the
original papers. We randomly selected a certain number of sam-
ples for each class as training samples, with the rest used for the
testing. In order to reduce the possible bias caused by the random
sampling, 10 sets of independent repeated experiments were con-
ducted.

4.2. Parameter analysis

4.2.1. Effect of the number of superpixels

First of all, the effect of the superpixel number on the proposed
SPLDA method was analyzed. The number of training samples was
randomly selected as 20 and 30 in the Indian Pines data set and
Pavia University data set, respectively. The accuracy values were
averaged over 10 runs to reduce the possible bias induced by the
random sampling. Considering that each superpixel usually con-
tains 10 to 30 pixels, the number of superpixels was selected from
600 to 2000 for the Indian Pines data set, and from 6000 to 20000
for the Pavia University data set.

Fig. 3(a)-(d) report the OA values of the proposed SPLDA
method under different numbers of superpixels with the two clas-
sifiers (i.e., KNN and SVM) on the two test images. It can be
observed that, as the superpixel number varies within a certain
range, the OA values of the SPLDA method are stable. It can thus be
observed that the proposed SPLDA method is robust to the num-
ber of superpixels. Therefore, we set the number of superpixels to
800 in the Indian Pines experiments, and to 18000 in the Pavia
University experiments.

4.2.2. Effect of the regularization parameters a and

The regularization parameters « and B are used to balance
the spectral, spatial, and regularized contributions, as introduced
in Section 3.3. We fixed the other parameters and focused on
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Fig. 7. SVM classification maps of the different methods with the Indian Pines data in dim=15. (a) False-color image of the Indian Pines data set (R: 57, G: 27, B: 17).
(b) Ground-truth map. (c) Original (SVM). (d) PCA. (e) LFDA. (f) NWFE. (g) LDE. (h) RLDE. (i) LPNPE. (j) SPLDA. (k) SSDR.

the effect of parameters o and S in the two HSI experimental
data sets. The parameters o and B were chosen from the range
[0,0.1,...,0.9], respectively. The number of training samples per
class was randomly chosen as 20 for both data sets.

Fig. 4 shows the OA values of the SSDR method under dif-
ferent values of parameters o and B. We use the SVM classifi-
cation results of the transformed image by SSDR to validate the
performance of the different parameters. It can be observed that,
for these two experimental data sets, the results remain relatively
stable when parameters o and S are varied. SSDR achieves the
highest OA in the Indian Pines data set when the parameters are
set as (&, B) = (0.5,0.2). Similarly, the optimal parameters for the
Pavia University data set are o = 0.2 and 8 = 0.1. The proposed
SSDR can achieve the best evaluation results when the contribu-
tions of the superpixel-guided graph and label-guided graph are at
a certain proportion. Typically, the weight of the superpixel-guided
graph is larger. This is mainly due to the fact that SPLDA takes
the spatial information of the surrounding pixels into account, and
can characterize data features more effectively than the traditional
spectral-based DR methods.

4.3. Experimental results

4.3.1. Indian pines image

In order to fully testify the performance of the proposed meth-
ods, experiments with the different methods under different sam-
ple numbers and different dimensions of projected space were
conducted. We randomly selected n (n = 5, 10, 15, 20, 25, 30) sam-
ples from each class as the training set, and the rest were used as
the test set. Considering that the ground-truth sample number of
two categories (grass-pasture-mowed and oats) in the Indian Pines
data is less than 30, half of the total quantity was chosen for the
training. The reduced dimensionality varied from 5 to 30.

Figs. 5 and 6 show the OAs of the KNN and SVM classifiers on
the dimension-reduced images obtained by the different DR meth-
ods. The OAs of the KNN and SVM classifiers on the original In-
dian Pines data set with different sample numbers are used as
the baselines. Compared to the other methods, SPLDA and SSDR
achieve the best and the second-best classification results in al-
most all cases with different dimensions under different numbers
of samples. The advantage is more obvious when the sample num-
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Table 1
Classification accuracies of the different DR methods for the Indian Pines data set.
Samples Classifiers Index  Original PCA LFDA NWFE LDE RLDE LPNPE SPLDA SSDR
5 KNN OA 44344261 4316+2.98 4544+355 53.83+4.24 4713+£358 5391+430 60.67+3.15 61.33+£216 61.60+2.10
AA 56.87+£2.03 5573+2.04 57.24+258 6543+247 59474317 6590+3.23 7471+188 75194091  75.41+1.08
Kappa 3793+256 36.66+2.96 39.07+3.63 4834+4.51 40924380 4844+465 5591+348 56.57+223 56.86+2.20
SVM OA 48.07+3.58 46.79+3.27 4544+355 53.50+4.75 46224299 5058+811 60.89+4.61 61.37+3.95 60.60+4.37
AA 60.76 £2.69 5891+1.53 5724+259 65.69+3.21 5827+279 6565+3.12 74594+2.04 75.36+198 74264154
Kappa 3793+256 36.66+2.96 39.07+3.63 48.34+451 4092+3.80 4844+4.65 5591+348 56.57+2.23 56.86+2.20
10 KNN OA 49.07+171 4735+£195 40.55+285 6114+£139 52.09+2.71 57.87+249 64.77+230 66.05+2.09 66.56+1.98
AA 61.62+1.69 59.61+133 54.77+1.74 7246+098 6542+126 7138+098 7899+125 79.82+0.98 79.94+1.09
Kappa 43204174 4134+194 34364278 5649+149 46.60+2.82 5297+262 6058+239 61.96+2.17 62.53+217
SVM OA 55114+2.70 5293+2.05 40544283 6139+£2.82 53.60+£3.64 5734+294 6399+4.12 6584+3.04 6713+3.99
AA 67.71+1.59 64.73+1.86 54.77+173 73.69+149 66.19+173 7112+141 7824+126 7949+131 79.254+1.80
Kappa 49.68+2.86 4725+221 34344276 56.69+3.12 4824+3.87 5244+313 60.74+419 6253+£3.31 62.71+4.30
15 KNN OA 51.83+1.76  50.01+1.81 4741+188 64.83+171 5764+2.08 6484+1.69 6713+1.85 68.66+182 69.73+2.11
AA 65.08+1.63 6346+173 6153+222 7612+0.83 69.88+1.24 76.84+0.67 80.46+1.07 8141+089 81.64+0.93
Kappa 4621+190 44224192 4144+193 6053+188 5256+219 60.52+179 8047+193 64.83+195 65.99+2.27
SVM 0A 58.80+2.93 56.54+2.99 46.88+2.53 6585+3.89 60.05+3.24 63.85+2.09 68.07+3.18 69.01+2.99 69.10+2.69
AA 71.60+ 148 6832+2.64 61.26+224 77.84+1.84 71.81+192 7683+1.04 8031+136 81.52+119 81.11+1.29
Kappa 53.79+3.14 5132+331 40984251 61.76+3.72 5523+342 5942+221 64224339 6519+3.18 65.32+2.89
20 KNN OA 54.62+1.83 52.87+134 56.92+149 67.89+191 59.19+174 68.04+230 6843+144 70.58+128 71.84+1.46
AA 6115+1.04 5936+135 6596+122 7232+0.80 6494+0.79 73.70+162 7572+075 76.98+091 7743+0.94
Kappa 49.18+191 4728+144 51.82+165 63924204 5427+181 64.04+249 6456+155 66.96+138 68.34+1.57
SVM OA 63.79+1.84 60.68+146 5588+166 7145+155 6239+134 66.78+£1.66 7010+180 71.06+£2.78 74.22+2.41
AA 69.39+0.90 66.00+0.89 6518+127 7517+143 67.79+0.63 73.70+122 76.69+117 7743+173 78.22+147
Kappa 59.31+196 55.81+159 50.69+1.86 67.82+171 57.74+145 62.73+1.78 66.38+2.00 68.42+234 70.96+2.03
25 KNN OA 55.64+126 53.68+120 61594072 69.71+148 62.21+111 70.69+115 6995+1.61 72424174 73.81+142
AA 6196+1.85 6031+165 69.65+1.02 7340+139 67.64+141 7515+1.18 7649+0.67 78.04+0.58 78.55+0.70
Kappa 5022+139 4811131 56.80+0.87 65.84+161 5746+129 66.93+126 66.19+170 68.95+1.86 70.45+1.56
SVM OA 66.03+180 6205+170 60.19+1.89 73.67+197 6589+113 7042+0.71 7132+297 74404183 76.72+2.00
AA 7113+£0.77 6739+158 6865+113 76.85+138 70.68+149 75.54+113 7744+139 79.60+0.77 79.61+1.23
Kappa 61.75+£1.93 5737+193 5532+2.09 7028+213 61.61+120 66.68+0.77 67.69+142 7115+£2.00 73.69+215
30 KNN OA 55.90+2.07 54214+210 6333+153 7049+221 6245+220 7119+£170 70.06+168 72.71+£1.69 73.91+155
AA 5732+114 5573+116 6579+096 68.74+0.77 62.83+148 70.224+0.66 70.80+0.67 72.704+0.55 72.84+0.53
Kappa 50.65+2.15 48.76+221 58.83+167 66.76+236 57.86+2.40 6752+184 66.33+181 69.27+1.81 70.59+1.67
SVM OA 66.14+£2.55 6296+251 63.62+144 73.88+224 6687+193 71.01+0.75 72.78+278 7461+£128 76.88+1.71
AA 66.31+118 6298+155 6590+0.63 71.78+1.06 6643+135 70.66+0.76 72.48+128 73.50+0.82 74.34+0.93
Kappa 6197+269 5836+2.70 59.11+153 7056+243 62.73+2.09 6737+086 6934+241 71314+144 73.92+1.88

ber is limited, which demonstrates that SPLDA is very effective for
the small training sample problem. This is mainly because the pro-
posed SPLDA method can make full use of the spatial consistency
information generated by the SLIC segmentation. It can be ob-
served that SPLDA also performs better than the LPNPE algorithm.
The main reason for this is that SPLDA adopts a shape-adaptive
neighborhood, which can accurately model the local spatial struc-
ture and ensure regional homogeneity. The performance of SSDR is
better than that of SPLDA, due to the simultaneous preservation of
the spatial and spectral similarity during the DR process.

Similarly, Fig. 6 reports the OAs of the different algorithms us-
ing the KNN classifier, which indicates that the SPLDA and SSDR
algorithms outperform the other methods in each of the dimen-
sions. It should be noted that PCA performs better than LFDA in
some cases, due to the fact that LFDA performs poorly under small
sample numbers.

The comparison results for the Indian Pines data set obtained
with the SVM classifier in dim=15 are visually shown in Fig. 7, in-
cluding the false-color image (a), the corresponding ground-truth
map (b), and the classification images (c)-(k), respectively. It can
be observed that the proposed SPLDA method performs better
than the other compared spectral-based methods, in most land-
over classes, and the SSDR algorithm produces more homogenous
areas and smoother classification maps than the other methods,
especially in the corn-notill, soybean-mintill, and hay-windrowed
classes. To further illustrate the comparison results, the quantita-
tive evaluation results for the OA (%) in dim=15 for all the meth-
ods are summarized in Table 1. The results include the average OA,
AA, and kappa coefficient, with the associated standard deviation,

over 10 runs for each method. The best results for each quality in-
dex are labeled in bold, and the second-best results are underlined
for the KNN and SVM classifiers, respectively. From Table 1, it can
be observed that the proposed SSDR method yields the best OA,
kappa, and AA values in most cases, and the values of the SPLDA
method are the second-highest among all the methods, which con-
firms the conclusion that SPLDA and SSDR outperform the other
spectral-based DR methods and the spatial-based method which
considers the spatial information based on a fixed neighborhood
window. The spatial-spectral combined method (SSDR) performs
better than the spatial-based method (SPLDA), which indicates
that simultaneously combining the spectral information and spa-
tial context provided by training samples is beneficial to DR.

4.3.2. Pavia university data set

This section describes the classification results of the different
DR methods on the Pavia University data set. For this data set, we
approximately set the number of superpixels to be 18000 and ran-
domly selected n (n= 10, 20, 30, 40, 50) samples from each class
as the training set. The remaining samples were used as the test
set. The reduced dimensionality was varied from 5 to 30.

Figs. 8 and 9 show the OAs with regard to the different reduced
dimensions and different sample sizes for the all methods with
the SVM and KNN classifiers, respectively. From Fig. 8, it can be
observed that, for the SVM classifier, the proposed SSDR method
obtains better classification results than the other methods in al-
most all cases of different dimensions, and achieves the best clas-
sification result around dim 10. SPLDA performs better than the
LPNPE method due to the flexibility of the neighborhood preserva-
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Fig. 10. SVM classification maps of the different methods with the Pavia University data in dim=10. (a) False-color image of the Pavia University data set (R: 102, G: 56, B:
31). (b) Ground-truth map. (c) Original (SVM). (d) PCA. (e) LFDA. (f) NWFE. (g) LDE. (h) RLDE. (i) LPNPE. (j) SPLDA. (K) SSDR.

Table 2
Classification accuracies of the different DR methods for the Pavia University data set.
Samples Classifiers Index  Original PCA LFDA NWFE LDE RLDE LPNPE SPLDA SSDR
10 KNN OA 5756 +£4.60 57.54+459 5637+415 59.05+431 6441+4.79 65.18+4.03 66.07+5.66 68.01+:546 67.52+5.54
AA 72.06+228 72.024+224 6516+2.92 7512+215 73.83+2.06 77.05+220 76.62+2.55 7829+2.76 79114242
Kappa 48.85+4.53 48.82+4.54 4659+4.84 50.81+4.35 56.12+568 57.27+569 58.62+682 60.83+6.50 60.26+5.93
SVM OA 64.99+3.04 6451+273 56.02+438 66.55+3.38 67.06+346 70.09+4.48 73.09+3.77 7438+3.64 74.67+4.03
AA 75.67+3.09 7528+281 64724297 7775+189 73904+229 7831+211 78.89+220 79.70+149 81.38+1.60
Kappa 56.77+343 56.17+3.03 4624+4.69 58.72+357 58.86+3.51 62.73+496 6637+412 67.83+3.97 68.14+4.37
20 KNN OA 64.82+2.54 6467+254 69.89+249 67.23+254 72814228 73.61+234 7563+198 78231164 78.28+2.59
AA 75.89+£0.79 7576+0.79 78.76+0.75 7933+100 8142+094 82.60+113 81.62+120 83.97+0.93 85.13+1.08
Kappa 56.56+2.66 56.39+2.66 62.56+2.68 59.49+2.71 6598+2.62 6693+£2.65 6935+228 72464191 72.56+2.96
SVM OA 7743+193  73.97+227 7096+212 7545+297 77.62+272 7957+275 78.79+113 80.13+226 82.53+2.07
AA 8319+142 8138+148 7638+137 8345+141 82.93+169 84.92+141 8290+127 84.07+£122 86.62+1.14
Kappa 7115+238 67024255 6333+245 6896+240 7149+323 73.89+266 73.05+139 75.66+2.68 77.59+2.53
30 KNN OA 66.11+1.04 6585+1.05 7555+191 69.69+124 7730+184 7817+154 78.88+249 82.11+2.06 83.11+1.93
AA 76.90+£090 76.71+0.96 82.62+112 80.97+105 83.99+094 84.99+0.71 8341+1.09 85984121 87.29+0.97
Kappa 58.03+126 57.72+126 69.11+237 62324143 71.25+220 72314217 73154£290 77.07+2.32 78.32+2.01
SVM OA 80.87+219 7716+172  77.80+218 78.09+211 81.20+230 82.81+133 82.88+151 83.82+156 85.54+1.88
AA 8525+1.57 83.40+098 8213+146 84.05+092 8541+121 86.18+146 85324135 86.15+1.60 88.09+1.21
Kappa 75.41+2.69 70.88+2.06 71.60+2.56 71.99+247 75874278 7775+168 7798+1.87 7911+1.96 81.26+2.30
40 KNN OA 67.73+0.79 6750+0.70 76.06+140 7140+0.90 7733+126 79.05+110 79.73+1.63 82.63+113  83.60+0.77
AA 78.50+£0.47 78.28+0.46 8416+0.89 8214+031 84.94+080 8591+0.60 84.46+0.64 87.11+057 88.14+0.52
Kappa 59.984+0.77 59.69+0.66 69.86+2.37 64.34+0.89 7141+137 7342+126 7421+193 77.78+136 78.97+0.94
SVM OA 82.53+2.56 78464223 8019+214  79.65+259 82474151 85304+2.01 83.67+1.04 8498+191 8717+1.64
AA 86.76 £1.05 84.61+114 8494+036 85.77+0.77 86.82+0.62 88.51+095 8649+0.76 8756+113 89.68+0.86
Kappa 77.544+3.06 72.52+2.65 74694241 7405+2.89 7748+180 80.98+151 79.00+£1.20 80.62+2.29 83.38+2.01
50 KNN OA 69.54+153 69.16+148 78.03+144 73.62+168 79.39+131 80.94+091 8117+1.11 84.60+£0.73 85.51+1.06
AA 79.22+1.04 78.89+1.08 8529+0.71 83.04+067 85.85+048 86.72+0.25 85.00+0.70 87.994+0.33 89.08 +0.44
Kappa 61.88+167 6141+164 72134+183 66.79+1.82 73.79+139 75.61+1.00 7590+132 80.14+0.87 81.28+1.27
SVM OA 83.61+242 79.60+1.92 8270+125 80.38+282 83.84+103 85.76+170 84.82+150 86.23+136 88.40+1.34
AA 87.83+1.07 8570+090 8636+1.02 86.50+133 87.79+0.69 88.91+0.93 8760+0.99 89.00+0.69 90.51+0.55

Kappa 78.86+2.93 7391+227 7768+144 7491+250 7917+124 8154+210 8043+183 82.20+166 84.91+1.64

tion. SPLDA also outperforms the other spectral-based DR methods, tribution of the label-guided graph is limited when the number of
especially in the case of small numbers of training samples. From training samples is small.

Fig. 9, it can be observed that, for the KNN classifier, the SSDR al- In order to further show the performance of the proposed al-
gorithm achieves the best OA value, up until the point where the gorithms, Fig. 10 provides a visual depiction of the classification
sample number is larger than 30. This is mainly because the con- maps obtained by the different methods for the Pavia University
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data set using the SVM classifier in dim=10. The false-color im-
age and ground truth are also presented in Fig. 10. It can be ob-
served that the proposed SPLDA and SSDR algorithms outperform
the other methods. For the bare soil area, SPLDA performs better
than SSDR, but in the meadows, SSDR performs better than SPLDA.
Similarly, we implemented 10 independent runs with the different
methods, and the average results of the OA, AA, and kappa values
in dim=10 are listed in Table 2. The results of the SVM and KNN
classifiers without DR are used as the baselines. SPLDA performs
better than LPNPE, which shows the effectiveness of using SLIC su-
perpixels in the proposed approach. The proposed SSDR algorithm
achieves the best classification performance in terms of OA, AA,
and kappa coefficient. The classification results indicate that SSDR
not only explores the spectral similarity by the label-guided graph
but it also makes full use of the spatial consistency property by
the superpixel-guided graph, to enhance the classification perfor-
mance.

5. Conclusions

In this paper, we have proposed a spatially regularized DR ap-
proach named SPLDA to preserve the spatial similarity during DR.
Furthermore, we have also proposed SSDR to exploit the spatial
and spectral information concurrently. Specifically, the HSI is first
segmented into adaptive regions by the SLIC superpixel segmen-
tation method, where each superpixel is considered to be homo-
geneous. A superpixel-guided graph is then constructed to cap-
ture the spatial similarity from the superpixels, and a label-guided
graph is learned to explore the spectral similarity. Finally, we com-
bine the superpixel-guided graph and the label-guided graph to
explore the spatial and spectral similarity simultaneously. The pro-
posed SPLDA and SSDR methods were tested on two HSI data sets,
and achieved better classification results than the other widely
used DR algorithms. Our future work will focus on the automatic
selection of parameters during feature combination, to further im-
prove the computational efficiency and classification accuracy.
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