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Dimension reduction (DR) is a useful preprocessing technology for hyperspectral image (HSI) classifica- 

tion. This paper presents an HSI DR method named superpixel-based spatial-spectral dimension reduc- 

tion (SSDR), which integrates the spatial and spectral similarity. The HSI is first segmented into non- 

overlapping superpixels, where pixels belonging to the same superpixel have strong correlations, and 

should be preserved after DR. We then apply the superpixel-based linear discriminant analysis (SPLDA) 

method, which learns a superpixel-guided graph to capture the spatial similarity. Pixels from the same 

label also have strong spectral correlations; thereby, we also construct a label-guided graph to explore 

the spectral similarity. These two graphs are finally integrated to learn the discriminant projection. The 

classification results on two widely used HSIs demonstrate the advantage of the proposed algorithms 

compared to the other state-of-the-art DR methods. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Hyperspectral images (HSIs) can be simultaneously acquired

with diagnostic information in the spectral domain and land-cover

distribution information in the spatial domain. Compared with

multispectral images, HSIs have a better ability to distinguish dif-

ferent materials, which has been extensively exploited in many ap-

plications, such as classification [1–3] , clustering [4] , target detec-

tion [5,6] , data unmixing [7–9] , anomaly detection [10] , and change

detection [11,12] . Besides, denoising is an active research topic as a

preprocessing technology of HSI applications [13] . Among these ap-

plications, classification has attracted a lot of attention in the last

decades [14] , e.g., in military surveillance, urban and rural plan-

ning, land-use and land-cover monitoring, and environmental dis-

aster assessment [15] . However, HSI classification becomes a chal-

lenging task because of the high dimensions and the limited num-

ber of training samples, which can cause the Hughes phenomenon

(the curse of dimensionality) [16,17] . In the meantime, the high di-

mensionality has brought great pressure to the transmission and

storage, which slows down the efficiency of the data processing

and increases the computational burden. Therefore, DR has become
∗ Corresponding author. 
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he key preprocessing technology in many information processing

asks [18–21] . 

As a preprocessing step before classification, hyperspectral di-

ension reduction (DR) technology mainly aims at extracting fea-

ures from the original image for classification, without sacrificing

mportant information. It can then search for a low-dimensional

ata space to effectively express the high-dimensional data char-

cteristics. DR helps to: (1) eliminate the redundancy between fea-

ures and improve the computational efficiency; (2) ameliorate the

tatistical ill-posed problem caused by the limited number of sam-

les; and (3) prevent the Hughes phenomenon and improve the

lassification accuracy. 

Popular DR techniques can be generally categorized as feature

election [22–24] and feature extraction methods. Feature extrac-

ion methods are dominant in DR, and can be categorized into

ocal- and global-based methods. Local methods are designed to

etain the structural information of local regions, whereas the

lobal methods need to learn the optimal projection under the

onstraint of all the sample pairs. Local methods include local lin-

ar embedding (LLE) [25] , local discriminant embedding (LDE) [26] ,

egularized LDE (RLDE) [27] , block sparse graph-based discriminant

nalysis (BSGDA) [28] , locality preserving projections (LPP) [29] ,

nd so on. LLE is a nonlinear DR algorithm, which is reconstructed

y neighboring samples, using the affine reconstruction coefficient

o characterize the local adjacency relationship of the sample set.

DE tries to embed the submanifold of each class by optimiz-

ng a unified problem. RLDE extends LDE by adding constraints
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http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2019.06.023&domain=pdf
mailto:xuhl@whu.edu.cn
mailto:zhanghongyan@whu.edu.cn
mailto:wei.he@riken.jp
https://doi.org/10.1016/j.neucom.2019.06.023


H. Xu, H. Zhang and W. He et al. / Neurocomputing 360 (2019) 138–150 139 

t  

a  

o  

c  

a  

t  

i  

a  

m  

s  

t  

c  

j  

m  

c  

s  

(  

s  

d  

p  

P  

o

 

o  

t  

b  

c  

k  

i  

m  

p  

a  

s  

e  

F  

t  

t  

e  

l  

a  

c  

d

 

t  

s  

t  

s  

b  

t  

l  

F  

s  

i  

a  

D  

t  

d  

f  

t  

t  

I  

i  

f  

a  

t  

f  

i  

t

 

d  

g  

t  

s  

s  

t  

f  

[  

t  

g  

S  

s  

a  

e  

s  

g  

o  

a  

F  

s  

s  

r

 

 

 

 

 

 

 

 

b  

e  

p  

t  

a

2

2

 

c  

m  

s  

r  

w  

a  

p  

c

 

w  

f  

s  

s  

t  

p  

b  

i  
hat preserve the data diversity. Sparsity graphs have also been

pplied in the classification of HSIs. For instance, BSGDA is one

f the sparsity-preserving graph construction methods, which in-

orporates class-label information for the supervised discriminant

nalysis. LPP learns to optimally preserve the neighborhood struc-

ure of the input data via a linear projective map. Linear discrim-

nant analysis (LDA) [30] , principal component analysis (PCA) [31] ,

nd isometric feature mapping (ISOMAP) [32] are typical global DR

ethods. PCA is one of the most popular DR algorithms, which

earches for an orthogonal projection to maximize the variance of

he input feature that maintains the overall distribution of the data

haracteristics during the DR process. LDA aims at finding a pro-

ection by maximizing the between-class covariance while mini-

izing the within-class covariance, so that the similar samples are

loser and the heterogeneous samples are further separated in the

ubspace. ISOMAP is based on classical multidimensional scaling

MDS), and it explores the inherent geometric structure of the data

et by establishing the geodesic distances between all the pairs of

ata points. These methods can also be generally classified into su-

ervised (LDA, LDE, RLDE, and BSGDA), unsupervised (LLE, ISOMAP,

CA, and LPP), and semisupervised methods, according to the a pri-

ri information [33–35] . 

To sum up, most of these methods are spectral-based, and they

nly take the spectral information into account [36,37] . However,

he spectral information of one specific pixel from one class can

e easily mistaken for that of pixels from other classes, which may

ause the classification results to appear very noisy [38] . As we

now, there is a high probability that nearby pixels will have sim-

lar spectral signatures and belong to the same material. Thereby,

any HSI classification methods utilize a combined spatial-spectral

rior, and have achieved state-of-the-art results [39,40] . From one

spect, the spatial information can be utilized in the classification

tage. For example, Benediktsson et al. [41] and Li et al. [42] used

xtended morphological profiles to explore the spatial information;

ang et al. [38] incorporated multiple kernels into a support vec-

or machine (SVM) classifier, which accounts for the exploration of

he spectral and spatial information within superpixels; and Zhou

t al. [43] proposed two spatial-spectral composite kernel extreme

earning machine (ELM) classification methods, which inherit the

dvantages of ELM. From another aspect, the postprocessing pro-

edure can also include spatial information exploration, as intro-

uced by Fang et al. [44] and Jiay et al. [45] . 

Several spatially regularized methods have also been introduced

o DR. Fang et al. [46] improved the LLE method by using a new

imilarity measurement based on both the spectral and spatial fea-

ures. In addition, the spatial-spectral contextual similarity mea-

ure [47] was proposed to preserve the pixel patchwise similarity

etween the observed pixels and their spatial neighbors. A spa-

ial regularizer was adopted by Ma et al. [48] to enhance the simi-

arity of the manifold coordinates of spatially surrounding pixels.

eng et al. [49] used heterogeneous and homogeneous spectral-

patial neighbors of hyperspectral pixels to define the discrim-

nate spectral-spatial margins (DSSMs), and explored both local

nd global information of hyperspectral data by maximizing the

SSM of hyperspectral data and casting a low-rank representa-

ion (LRR) regularizer. Huang et al. [50] proposed an unsupervised

imensionality reduction algorithm called spatial-spectral mani-

old reconstruction preserving embedding (SSMRPE), which utilizes

he spatial-spectral combined distance (SSCD) for selecting effec-

ive spatial-spectral neighbors of HSI pixels to construct a graph.

n [27] , Zhou et al. proposed a local pixel neighborhood preserv-

ng embedding (LPNPE) algorithm, which considers that the pixels

rom one fixed-size window neighbor will have strong similarity

nd can be adopted to learn a spatial graph embedding. However,

he fixed-size window cannot capture the spatial correlations ef-

ectively. It seems that a shape-adaptive window has a better abil-
ty to exploit the spatial context, and can be adapted according to

he different structures. 

In view of this, this paper proposes the superpixel-based linear

iscriminant analysis (SPLDA) method to construct a superpixel-

uided graph, where the superpixel spatial regularizer constrains

he spatial neighbors with high spectral similarity to preserve the

patial similarity after DR. Moreover, the superpixel-based spatial-

pectral dimension reduction (SSDR) method is proposed to in-

egrate the superpixel-guided graph with the label-guided graph

or HSI DR. Specifically, the simple linear iterative clustering (SLIC)

51] superpixel segmentation algorithm is first utilized to segment

he HSI into non-overlapping superpixels, and the superpixel-

uided graph is then constructed to capture the spatial similarity.

ubsequently, a label-guided graph is constructed to preserve the

pectral similarity from the same labels. Finally, the two graphs

re integrated to learn a discriminant projection. This work is an

xtension of our previous conference work [52] . Compared to the

pectral-related work, i.e., RLDE, SPLDA learns a superpixel-guided

raph with spatial information. SPLDA was proposed on the basis

f the LPNPE method by exploring the spatial relationship in the

daptive superpixels, rather than the fixed-size window in LPNPE.

urthermore, SSDR is an extension of SPLDA that integrates the

uperpixel-guided and label-guided graphs to utilize the spatial-

pectral information. The main contributions of the proposed algo-

ithms are as follows: 

(1) A superpixel-guided graph is learned to preserve the spatial

similarity. Compared to a fixed-size window based graph,

the superpixel-guided graph is shape-adaptive and more ef-

fective at exploiting the spatial context. 

(2) The superpixel-guided graph and the label-guided graph are

integrated to simultaneously explore the spatial and spectral

similarity, to learn a discriminant projection. 

(3) The experimental results obtained with two HSI data sets

confirm the advantage of the proposed methods for small

sample size classification. 

The rest of this paper is organized as follows. In Section 2 , we

riefly review the theories of SLIC superpixel segmentation, graph

mbedding (GE), LDA, and LDE. Detailed descriptions of the pro-

osed methods are provided in Section 3 , and Section 4 provides

he experimental results and discussions. Finally, our conclusions

re drawn in Section 5 . 

. Related works 

.1. Simple linear iterative clustering (SLIC) superpixel segmentation 

Pixels within a local domain are likely to share similar spectral

urves, which means that local domains have the property of ho-

ogeneity. In order to exploit the spatial neighborhood structure,

uperpixel segmentation is introduced to generate homogeneous

egions. Compared to a fixed-size local region, such as a square

indow, superpixel segmentation can segment images adaptively,

ccording to the spatial features. Moreover, the spectral and spatial

rior information can be taken into account through the spectral

onstraint of the superpixel regions. 

SLIC, as proposed by Achanta et al. [51] , is one of the most

idely used segmentation methods, due to its simplicity and ef-

ectiveness. SLIC adopts a K -means clustering approach to generate

uperpixels. To start SLIC, in detail, the color space of the image

hould first be transformed into the CIELAB color space. The k ini-

ial cluster centers are then distributed on a regular grid spaced S

ixels apart, where the grid interval is 
√ 

N/K , N is the total num-

er of pixels of the image, and K is the number of superpixels set

n advance. The centers are moved to the lowest gradient position
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in a 3 × 3 neighborhood, in order to avoid centering a superpixel

on an edge or a noisy pixel. 

To speed up the algorithm, SLIC limits the search region to

2 S × 2 S , instead of the whole image, which can significantly reduce

the number of distance calculations, resulting in a speed advantage

compared to conventional K -means clustering. 

The distance measure D between cluster center C k and pixel i is

formulated as follows: 

d lab = 

√ 

(l k − l i ) 2 + (a k − a i ) 2 + (b k − b i ) 2 

d xy = 

√ 

(x k − x i ) 2 + (y k − y i ) 2 

D = 

√ 

( d lab ) 2 + 

(
d xy 

S 

)2 

m 

2 , 

(1)

where d lab is the color distance and d xy is the position distance.

m balances the relative importance between the color similarity

and spatial proximity. As m gets bigger, the resulting superpixels

become more compact and have a lower area to perimeter ratio.

As m gets smaller, the resulting superpixels adhere more tightly to

image boundaries, but have a less regular size and shape [51] . 

According to D , each pixel can be associated with the nearest

cluster center. Therefore, SLIC updates the new cluster center loca-

tion and then computes the residual error, until convergence. 

2.2. Local discriminant embedding (LDE) 

The traditional DR methods can be unified into a common

graph embedding framework for DR [53] , which provides an undi-

rected weighted graph to describe the geometric properties of

the data set. We begin by defining the notation and the prob-

lem statement. Vectors are written in lowercase and matrices are

shown in capitals. For instance, x stands for a vector and X rep-

resents a matrix. Specifically, for data X = { x 1 , x 2 , . . . , x m 

} ∈ R n ×m ,

where x i ∈ R n denotes the i th vertex with n features, we let W

be the weight matrix, with W ij standing for the distance between

vertices x i and x j . The key point of graph embedding is to find

a projection which can preserve the similarity between vertices,

measured by the weight matrix graph W . We assume that the pro-

jection matrix P ∈ R n × d ( d � n ) is expected to transform the data X

into the low-dimensional space by a linear function, i.e., Y = P T X .

 = { y 1 , y 2 , . . . , y m 

} is the low-dimensional embedding of all the

data. The objective function of the graph embedding is then de-

fined as: 

P ∗ = arg min 

P T X X T P= I 

∑ 

i, j 

‖ P T X i − P T X j ‖ 

2 
W i j , (2)

where the constraint P T X X T P = I removes an arbitrary scaling fac-

tor in the embedding. According to Yan et al. [53] , (2) can be de-

rived as follows: 

P ∗ = arg min 

P T X X T P= I 
tr(P T X LX 

T P ) 

= arg min 

tr(P T X LX 

T P ) 

tr(P T X X 

T P ) 
, (3)

where L = D − W is the Laplacian matrix [54] , and D is a diagonal

matrix with the sums of the i th row of W ij by D ii = 

∑ 

j W i j . The

optimal projection P ∗ = [ p 1 , p 2 , . . . .p d ] that minimizes the objec-

tive function is given by the minimum eigenvalue: 

X LX 

T p d = λd X X 

T p d . (4)

LDE is conducted under the graph embedding framework, and

it tries to learn a label-guided graph. In effect, LDE seeks to dis-

sociate the submanifold of each class from one another [26] . The

procedure of LDE can be characterized by the following three steps.
Firstly, the label-guided neighborhood graph construction. Two

raphs are constructed, i.e., the within-class graph G w 

and the

etween-class graph G b . To construct G w 

, for each pair of points x i 
nd x j , an edge is added between them if they are from the same

lass and x j is the k -nearest neighbor of x i . To construct G w 

, an

dge is added if x i and x j are from different classes and x j is the

 -nearest neighbor of x i . 

Secondly, the affinity weight matrix computation. To compute

he affinity matrix W w 

of G w 

, each element w w, ij of W w 

is the

eight of the edge between x i and x j , and is defined as: 

 w,i j = exp[ −‖ x i − x j ‖ 

2 /t] . (5)

imilarly, the affinity weight W b of G b is computed in the same

ay. 

Finally, the projection vector optimization. The objective func-

ion of LDE is given as follows: 

rg min 

tr{ P T X L w 

X 

T P } 
tr{ P T X L b X 

T P } , (6)

here L b = D b − W b is the between-class graph Laplacian matrices,

 w 

= D w 

− W w 

is the within-class graph Laplacian matrices, and

 b ( D w 

) is a diagonal matrix whose entries are column sums of

 b ( W w 

). 

.3. Linear discriminant analysis (LDA) 

LDA [30] constructs a within-class scatter matrix and a

etween-class scatter matrix. The within-class scatter matrix S w 

haracterizes the intraclass compactness, while the between-class

catter matrix S b describes the interclass separability, which are

hown as follows: 

 w 

= 

c ∑ 

k =1 

( 

n K ∑ 

i =1 

(x (k ) 
i 

− μ(k ) )(x (k ) 
i 

− μ(k ) ) T 

) 

(7)

 b = 

c ∑ 

k =1 

n k (μ
(k ) − μ)(μ(k ) − μ) T , (8)

here x (k ) 
i 

is the i th sample in the k th class, μ( k ) is the mean of

he k th class, n k is the number of samples in the k th class, and μ
s the mean vector of the entire training set. 

To enhance intraclass compactness and interclass separabil-

ty, LDA seeks the projection direction in which the ratio of the

etween-class covariance to within-class covariance is maximized.

he optimal projection matrix P can be obtained with the follow-

ng optimization problem: 

 = arg min 

p 

tr(P T S w 

P ) 

tr(P T S b P ) 

= arg min 

p 

tr(P T S w 

P ) 

tr(P T (S b + S w 

) P ) 
, (9)

here S b + S w 

= X X T . 

. Spatial-spectral dimension reduction 

In this section, we first present the SPLDA method, which builds

 superpixel-guided graph to exploit the spatial information. SPLDA

tilizes the prior assumption that pixels from the same super-

ixel have strong correlations, and tries to find an optimal pro-

ection which can preserve the local homogeneity. Subsequently,

e build a label-guided graph to learn the spectral similarity. The

roposed SSDR integrates the superpixel-guided graph and label-

uided graph to simultaneously capture the structural similarity

nderlying the spectral and spatial dimensions. 
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Fig. 1. The generation process for superpixels in an HSI. 
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.1. The generation process for superpixels in the HSI 

Differing from single-band gray or three-band color images,

SIs usually have tens or hundreds of spectral bands. On this basis,

pplying SLIC to an HSI directly will result in low computational

fficiency. Hence, PCA is first utilized to extract the first three prin-

ipal components of the HSI as the input data. The input image is

hen segmented into K homogeneous superpixels, with K set in ad-

ance. Finally, the location indices of each superpixel boundary are

apped to the original HSI space to generate the non-overlapping

-D superpixels [38] . The flowchart of superpixel generation is il-

ustrated in Fig. 1 . 

.2. Superpixel-based linear discriminant analysis (SPLDA) 

The HSI image can be denoted as X = [ x 1 , . . . , x M 

] , with X i ∈ R N ,

nd M is the number of pixels. Y = [ y 1 , y 2 , . . . , y M 

] stands for the

imension-reduced points, with Y = P T X . The HSI is generated into

 superpixels with different shapes and sizes via SLIC. Considering

ne sample x i , the superpixel neighboring pixels corresponding to

 i are represented as x 
( j) 
i 

( j = 1 , 2 , . . . , k i ) , where k i stands for the

ixel number in one superpixel. For each pixel x i , we can obtain

he superpixel-guided graph W ii j 
to capture the similarity between

 i and x 
( j) 
i 

in the same superpixel: 

 ii j = 

exp{−γ0 ‖ x i − x ( j) 
i 

‖ 

2 } ∑ k i 
j=1 

exp{−γ0 ‖ x i − x ( j) 
i 

‖ 

2 } . (10) 

The pixels from the same superpixel will have close similarity

55] , and this relationship should be retained after the DR. In other

ords, the close relationship of the pixels from the same super-

ixel should remain after DR. To preserve this intrinsic graph, the

ptimization model is formulated as: 

 opt = arg min 

P T X X T P= I 

M ∑ 

i =1 

k i ∑ 

j=1 

‖ y i − y ( j) 
i 

‖ 

2 W ii j , (11)

here the constraint P T X X T P = I is adopted to scale the embed-

ing. The objective function (11) can be easily converted to: 

 opt = arg min 

P T X X T P= I 
tr(P T S SPLDA 

w 

P ) 

= arg min 

tr(P T S SPLDA 
w 

P ) 

tr(P T S SPLDA 
b 

P ) 
, (12) 

here S SPLDA 
w 

= 

∑ M 

i =1 ( 
∑ k i 

j=1 
W ii j 

(x i − x 
( j) 
i 

)(x i − x 
( j) 
i 

) T ) is the

uperpixel-guided scatter matrix, and S SPLDA 
b 

= X X T is the dis-

imilarity scatter matrix. Similar to LDA, the objective model

12) tries to find a discriminant low-dimensional space by mini-

izing the superpixel neighborhood interclass preserving scatter

hile, at the same time, maximizing the distance between the

eans of the samples. After being transformed into a projection
pace, data points in the same superpixel maintain their intrin-

ic neighborhood relations, whereas neighboring superpixels no

onger stick to one another. A schematic diagram of SPLDA is

rovided in Fig. 2 . 

Eq. (12) can be easily solved by the generalized eigenvalue de-

omposition approach: 

 

SPLDA 
w 

p d = λd S 
SPLDA 
b p d , (13)

here λd is the d th eigenvalue, and the projection matrix is P =
 p 1 , p 2 , . . . , p d ] , where p d is the eigenvector corresponding to the

 th smallest nonzero eigenvalue. 

.3. Spatial-spectral dimension reduction (SSDR) 

As mentioned in Section 3.2 , SPLDA can fully use the spatial in-

ormation in the HSI and find a discriminant projection. However,

PLDA fails to take the label information of the samples into ac-

ount. Inspiringly, as introduced in Section 2.2 , the label-guided

raphs, i.e., G w 

and G b , are constructed, and the related affinity

eights are W w 

and W b , respectively. The proposed SSDR tries to

ntegrate the superpixel-guided graph and label-guided graph to

tilize the spatial and spectral similarity concurrently. 

Firstly, on the basis of the label-guided weight matrices W w 

nd W b , we extend LDE to regularized LDE (RLDE) and reformu-

ate (6) as the LDA version: 

rg min 

tr(P T S RLDE 
w 

P ) 

tr(P T S RLDE 
b 

P ) 
, (14) 

here S RLDE 
w 

= [(1 − α) S w 

+ αJ reg ] with S w 

= X L w 

X T , J reg = 

∑ 

j S w,i j ,

nd S RLDE 
b 

= X L b X 
T . The regularization term J reg = 

∑ 

j S w,i j is a di-

gonal matrix, which can overcome the singularity when training

amples are limited [27] . 

Secondly, by setting S SSDR 
w 

= [(1 − β) S SPLDA 
w 

+ βS RLDE 
w 

] and S SSDR 
b 

=
(1 − β) S SPLDA 

b 
+ βS RLDE 

b 
] , we fuse SPLDA (12) and RLDE (14) into

ne objective function: 

rg min 

tr(P T S SSDR 
w 

P ) 

tr(P T S SSDR 
b 

P ) 
, (15) 

n which α and β are two tradeoff parameters that control the rel-

tive importance of the spatial information, spectral information,

nd regularization terms with 0 ≤α, β ≤ 1. In this way, the super-

ixel spatial structure and the labeled spectral information are in-

egrated to learn a discriminative low-dimensional subspace. The

ptimization (15) can be efficiently solved by the minimum eigen-

alue solution to the generalized eigenvalue problem (4) . 

. Experimental results and discussions 

In order to demonstrate the effectiveness of the proposed algo-

ithms, we conducted experiments on two widely used HSI data

ets. This section includes three parts: (1) an introduction to the
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Fig. 2. Schematic diagram of SPLDA. 
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experimental data sets and the experimental setup; (2) a param-

eter analysis for the proposed methods; and (3) a quantitative

assessment of the proposed algorithms for HSI classification by

a comparison with other existing state-of-the-art methods: PCA

[31] , local Fisher discriminant analysis (LFDA) [56] , nonparametric

weighted feature extraction (NWFE) [57] , LDE [26] , RLDE [27] , and

LPNPE [27] . 

4.1. Experimental data sets and setup 

(1) The Indian Pines data set: This data set was acquired by the

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor in

1992 over the Indian Pines test site in North-western Indiana. The

image contains 145 × 145 pixels at a spatial resolution of 20 m. The

AVIRIS sensor generates 220 bands across the 0.4 – 2.5 μm spectral

range. In total, 200 bands of the image were retained for the ex-

periments after removing the 20 water absorption bands. The total

number of labeled samples was 10249 from 16 classes. The false-

color image (R:50, G:27, B:17) is shown in Fig. 7 (a). 

(2) The Pavia University data set: This data set was acquired by

the Reflective Optics System Imaging Spectrometer (ROSIS) sensor.

It is of a spatial size of 610 × 340 pixels and contains 103 spectral

bands, after removing the noisy and water absorption bands. The

available ground truth contains nine classes. The false-color image

(R:102, G:56, B:31) is shown in Fig. 10 (a). 

This paper utilizes the overall accuracy (OA), average accuracy

(AA), and kappa coefficient to evaluate the effectiveness of the

proposed SPLDA and SSDR algorithms. Two simple classifiers were

adopted to evaluate the DR performance: k -nearest neighbor (KNN)

and SVM. The parameters in SVM, i.e., the radial basis function

(RBF) kernel parameter and the penalty factor, were selected by

10-fold cross validation. We compared the proposed SPLDA and

SSDR algorithms with six representative DR methods. The compar-

ison algorithms were as follows, among which the first five meth-

ods are spectral feature based DR methods, and the last method

takes the spatial structure information into consideration. 

(1) Principal component analysis (PCA): a classic method of

global DR [31] , which aims to find a subspace of orthogo-

nal projections in accordance with maximizing the variance

of the input feature matrix. 

(2) Local fisher discriminant analysis (LFDA) [56] : uses lo-

cal neighborhood information to construct the weighted

between-class and within-class scatter matrices, and then

finds a more discriminative subspace. 

(3) Nonparametric weighted feature extraction (NWFE) [57] : is

based on a nonparametric extension of the scatter matrices.

The main idea is putting different weights on each sample
to compute the “weighted means”, and defining new non-

parametric between-class and within-class scatter matrices

to obtain more features. 

(4) Local discriminant embedding (LDE): a manifold learning

method [26] , which attempts to maintain the original neigh-

borhood relations for the neighboring data points of the

same class and exclude neighboring points of different

classes after the embedding. 

(5) Regularized LDE (RLDE) [27] : extends LDE by adding con-

straints that preserve the data diversity, and overcomes the

singularity in the case of limited training samples. 

(6) Local pixel neighborhood preserving embedding (LPNPE)

[27] : the method takes the spatial information that mini-

mizes the scatter matrix in a fixed neighborhood window

into consideration, and maximizes the total scatter matrix. 

The parameters of these methods were set as suggested in the

riginal papers. We randomly selected a certain number of sam-

les for each class as training samples, with the rest used for the

esting. In order to reduce the possible bias caused by the random

ampling, 10 sets of independent repeated experiments were con-

ucted. 

.2. Parameter analysis 

.2.1. Effect of the number of superpixels 

First of all, the effect of the superpixel number on the proposed

PLDA method was analyzed. The number of training samples was

andomly selected as 20 and 30 in the Indian Pines data set and

avia University data set, respectively. The accuracy values were

veraged over 10 runs to reduce the possible bias induced by the

andom sampling. Considering that each superpixel usually con-

ains 10 to 30 pixels, the number of superpixels was selected from

00 to 2000 for the Indian Pines data set, and from 60 0 0 to 20 0 0 0

or the Pavia University data set. 

Fig. 3 (a)–(d) report the OA values of the proposed SPLDA

ethod under different numbers of superpixels with the two clas-

ifiers (i.e., KNN and SVM) on the two test images. It can be

bserved that, as the superpixel number varies within a certain

ange, the OA values of the SPLDA method are stable. It can thus be

bserved that the proposed SPLDA method is robust to the num-

er of superpixels. Therefore, we set the number of superpixels to

00 in the Indian Pines experiments, and to 18000 in the Pavia

niversity experiments. 

.2.2. Effect of the regularization parameters α and β
The regularization parameters α and β are used to balance

he spectral, spatial, and regularized contributions, as introduced

n Section 3.3 . We fixed the other parameters and focused on
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Fig. 3. Classification accuracy with respect to the number of superpixels on the two test data sets: (a) Indian Pines image with SVM classifier; (b) Indian Pines image with 

KNN classifier; (c) Pavia University image with SVM classifier; (d) Pavia University image with KNN classifier. 

Fig. 4. The changes of the evaluation values with changes of parameters α and β on the two HSI data sets: (a) Indian Pines; (b) Pavia University. 
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Fig. 5. OAs with respect to: (a)–(f) different sizes of training set (5, 10, 15, 20, 25, 30) and different reduced dimensions (from 5 to 30) for the Indian Pines data set, 

combined with the SVM classifier. 

Fig. 6. OAs with respect to: (a)–(f) different sizes of training set (5, 10, 15, 20, 25, 30) and different reduced dimensions (from 5 to 30) for the Indian Pines data set, 

combined with the KNN classifier. 
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Fig. 7. SVM classification maps of the different methods with the Indian Pines data in dim = 15. (a) False-color image of the Indian Pines data set (R: 57, G: 27, B: 17). 

(b) Ground-truth map. (c) Original (SVM). (d) PCA. (e) LFDA. (f) NWFE. (g) LDE. (h) RLDE. (i) LPNPE. (j) SPLDA. (k) SSDR. 
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he effect of parameters α and β in the two HSI experimental

ata sets. The parameters α and β were chosen from the range

0 , 0 . 1 , . . . , 0 . 9] , respectively. The number of training samples per

lass was randomly chosen as 20 for both data sets. 

Fig. 4 shows the OA values of the SSDR method under dif-

erent values of parameters α and β . We use the SVM classifi-

ation results of the transformed image by SSDR to validate the

erformance of the different parameters. It can be observed that,

or these two experimental data sets, the results remain relatively

table when parameters α and β are varied. SSDR achieves the

ighest OA in the Indian Pines data set when the parameters are

et as (α, β) = (0 . 5 , 0 . 2) . Similarly, the optimal parameters for the

avia University data set are α = 0 . 2 and β = 0 . 1 . The proposed

SDR can achieve the best evaluation results when the contribu-

ions of the superpixel-guided graph and label-guided graph are at

 certain proportion. Typically, the weight of the superpixel-guided

raph is larger. This is mainly due to the fact that SPLDA takes

he spatial information of the surrounding pixels into account, and

an characterize data features more effectively than the traditional

pectral-based DR methods. 
.3. Experimental results 

.3.1. Indian pines image 

In order to fully testify the performance of the proposed meth-

ds, experiments with the different methods under different sam-

le numbers and different dimensions of projected space were

onducted. We randomly selected n ( n = 5, 10, 15, 20, 25, 30) sam-

les from each class as the training set, and the rest were used as

he test set. Considering that the ground-truth sample number of

wo categories (grass-pasture-mowed and oats) in the Indian Pines

ata is less than 30, half of the total quantity was chosen for the

raining. The reduced dimensionality varied from 5 to 30. 

Figs. 5 and 6 show the OAs of the KNN and SVM classifiers on

he dimension-reduced images obtained by the different DR meth-

ds. The OAs of the KNN and SVM classifiers on the original In-

ian Pines data set with different sam ple numbers are used as

he baselines. Compared to the other methods, SPLDA and SSDR

chieve the best and the second-best classification results in al-

ost all cases with different dimensions under different numbers

f samples. The advantage is more obvious when the sample num-
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Table 1 

Classification accuracies of the different DR methods for the Indian Pines data set. 

Samples Classifiers Index Original PCA LFDA NWFE LDE RLDE LPNPE SPLDA SSDR 

5 KNN OA 44.34 ± 2.61 43.16 ± 2.98 45.44 ± 3.55 53.83 ± 4.24 47.13 ± 3.58 53.91 ± 4.30 60.67 ± 3.15 61.33 ± 2.16 61.60 ± 2.10 

AA 56.87 ± 2.03 55.73 ± 2.04 57.24 ± 2.58 65.43 ± 2.47 59.47 ± 3.17 65.90 ± 3.23 74.71 ± 1.88 75.19 ± 0.91 75.41 ± 1.08 

Kappa 37.93 ± 2.56 36.66 ± 2.96 39.07 ± 3.63 48.34 ± 4.51 40.92 ± 3.80 48.44 ± 4.65 55.91 ± 3.48 56.57 ± 2.23 56.86 ± 2.20 

SVM OA 48.07 ± 3.58 46.79 ± 3.27 45.44 ± 3.55 53.50 ± 4.75 46.22 ± 2.99 50.58 ± 8.11 60.89 ± 4.61 61.37 ± 3.95 60.60 ± 4.37 

AA 60.76 ± 2.69 58.91 ± 1.53 57.24 ± 2.59 65.69 ± 3.21 58.27 ± 2.79 65.65 ± 3.12 74.59 ± 2.04 75.36 ± 1.98 74.26 ± 1.54 

Kappa 37.93 ± 2.56 36.66 ± 2.96 39.07 ± 3.63 48.34 ± 4.51 40.92 ± 3.80 48.44 ± 4.65 55.91 ± 3.48 56.57 ± 2.23 56.86 ± 2.20 

10 KNN OA 49.07 ± 1.71 47.35 ± 1.95 40.55 ± 2.85 61.14 ± 1.39 52.09 ± 2.71 57.87 ± 2.49 64.77 ± 2.30 66.05 ± 2.09 66.56 ± 1.98 

AA 61.62 ± 1.69 59.61 ± 1.33 54.77 ± 1.74 72.46 ± 0.98 65.42 ± 1.26 71.38 ± 0.98 78.99 ± 1.25 79.82 ± 0.98 79.94 ± 1.09 

Kappa 43.20 ± 1.74 41.34 ± 1.94 34.36 ± 2.78 56.49 ± 1.49 46.60 ± 2.82 52.97 ± 2.62 60.58 ± 2.39 61.96 ± 2.17 62.53 ± 2.17 

SVM OA 55.11 ± 2.70 52.93 ± 2.05 40.54 ± 2.83 61.39 ± 2.82 53.60 ± 3.64 57.34 ± 2.94 63.99 ± 4.12 65.84 ± 3.04 67.13 ± 3.99 

AA 67.71 ± 1.59 64.73 ± 1.86 54.77 ± 1.73 73.69 ± 1.49 66.19 ± 1.73 71.12 ± 1.41 78.24 ± 1.26 79.49 ± 1.31 79.25 ± 1.80 

Kappa 4 9.6 8 ± 2.86 47.25 ± 2.21 34.34 ± 2.76 56.69 ± 3.12 48.24 ± 3.87 52.44 ± 3.13 60.74 ± 4.19 62.53 ± 3.31 62.71 ± 4.30 

15 KNN OA 51.83 ± 1.76 50.01 ± 1.81 47.41 ± 1.88 64.83 ± 1.71 57.64 ± 2.08 64.84 ± 1.69 67.13 ± 1.85 68.66 ± 1.82 69.73 ± 2.11 

AA 65.08 ± 1.63 63.46 ± 1.73 61.53 ± 2.22 76.12 ± 0.83 69.88 ± 1.24 76.84 ± 0.67 80.46 ± 1.07 81.41 ± 0.89 81.64 ± 0.93 

Kappa 46.21 ± 1.90 44.22 ± 1.92 41.44 ± 1.93 60.53 ± 1.88 52.56 ± 2.19 60.52 ± 1.79 80.47 ± 1.93 64.83 ± 1.95 65.99 ± 2.27 

SVM OA 58.80 ± 2.93 56.54 ± 2.99 46.88 ± 2.53 65.85 ± 3.89 60.05 ± 3.24 63.85 ± 2.09 68.07 ± 3.18 69.01 ± 2.99 69.10 ± 2.69 

AA 71.60 ± 1.48 68.32 ± 2.64 61.26 ± 2.24 77.84 ± 1.84 71.81 ± 1.92 76.83 ± 1.04 80.31 ± 1.36 81.52 ± 1.19 81.11 ± 1.29 

Kappa 53.79 ± 3.14 51.32 ± 3.31 40.98 ± 2.51 61.76 ± 3.72 55.23 ± 3.42 59.42 ± 2.21 64.22 ± 3.39 65.19 ± 3.18 65.32 ± 2.89 

20 KNN OA 54.62 ± 1.83 52.87 ± 1.34 56.92 ± 1.49 67.89 ± 1.91 59.19 ± 1.74 68.04 ± 2.30 68.43 ± 1.44 70.58 ± 1.28 71.84 ± 1.46 

AA 61.15 ± 1.04 59.36 ± 1.35 65.96 ± 1.22 72.32 ± 0.80 64.94 ± 0.79 73.70 ± 1.62 75.72 ± 0.75 76.98 ± 0.91 77.43 ± 0.94 

Kappa 49.18 ± 1.91 47.28 ± 1.44 51.82 ± 1.65 63.92 ± 2.04 54.27 ± 1.81 64.04 ± 2.49 64.56 ± 1.55 66.96 ± 1.38 68.34 ± 1.57 

SVM OA 63.79 ± 1.84 60.68 ± 1.46 55.88 ± 1.66 71.45 ± 1.55 62.39 ± 1.34 66.78 ± 1.66 70.10 ± 1.80 71.06 ± 2.78 74.22 ± 2.41 

AA 69.39 ± 0.90 66.00 ± 0.89 65.18 ± 1.27 75.17 ± 1.43 67.79 ± 0.63 73.70 ± 1.22 76.69 ± 1.17 77.43 ± 1.73 78.22 ± 1.47 

Kappa 59.31 ± 1.96 55.81 ± 1.59 50.69 ± 1.86 67.82 ± 1.71 57.74 ± 1.45 62.73 ± 1.78 66.38 ± 2.00 68.42 ± 2.34 70.96 ± 2.03 

25 KNN OA 55.64 ± 1.26 53.68 ± 1.20 61.59 ± 0.72 69.71 ± 1.48 62.21 ± 1.11 70.69 ± 1.15 69.95 ± 1.61 72.42 ± 1.74 73.81 ± 1.42 

AA 61.96 ± 1.85 60.31 ± 1.65 69.65 ± 1.02 73.40 ± 1.39 67.64 ± 1.41 75.15 ± 1.18 76.49 ± 0.67 78.04 ± 0.58 78.55 ± 0.70 

Kappa 50.22 ± 1.39 48.11 ± 1.31 56.80 ± 0.87 65.84 ± 1.61 57.46 ± 1.29 66.93 ± 1.26 66.19 ± 1.70 68.95 ± 1.86 70.45 ± 1.56 

SVM OA 66.03 ± 1.80 62.05 ± 1.70 60.19 ± 1.89 73.67 ± 1.97 65.89 ± 1.13 70.42 ± 0.71 71.32 ± 2.97 74.40 ± 1.83 76.72 ± 2.00 

AA 71.13 ± 0.77 67.39 ± 1.58 68.65 ± 1.13 76.85 ± 1.38 70.68 ± 1.49 75.54 ± 1.13 77.44 ± 1.39 79.60 ± 0.77 79.61 ± 1.23 

Kappa 61.75 ± 1.93 57.37 ± 1.93 55.32 ± 2.09 70.28 ± 2.13 61.61 ± 1.20 66.68 ± 0.77 67.69 ± 1.42 71.15 ± 2.00 73.69 ± 2.15 

30 KNN OA 55.90 ± 2.07 54.21 ± 2.10 63.33 ± 1.53 70.49 ± 2.21 62.45 ± 2.20 71.19 ± 1.70 70.06 ± 1.68 72.71 ± 1.69 73.91 ± 1.55 

AA 57.32 ± 1.14 55.73 ± 1.16 65.79 ± 0.96 68.74 ± 0.77 62.83 ± 1.48 70.22 ± 0.66 70.80 ± 0.67 72.70 ± 0.55 72.84 ± 0.53 

Kappa 50.65 ± 2.15 48.76 ± 2.21 58.83 ± 1.67 66.76 ± 2.36 57.86 ± 2.40 67.52 ± 1.84 66.33 ± 1.81 69.27 ± 1.81 7 0.59 ± 1.67 

SVM OA 66.14 ± 2.55 62.96 ± 2.51 63.62 ± 1.44 73.88 ± 2.24 66.87 ± 1.93 71.01 ± 0.75 72.78 ± 2.78 74.61 ± 1.28 76.88 ± 1.71 

AA 66.31 ± 1.18 62.98 ± 1.55 65.90 ± 0.63 71.78 ± 1.06 66.43 ± 1.35 70.66 ± 0.76 72.48 ± 1.28 73.50 ± 0.82 74.34 ± 0.93 

Kappa 61.97 ± 2.69 58.36 ± 2.70 59.11 ± 1.53 70.56 ± 2.43 62.73 ± 2.09 67.37 ± 0.86 69.34 ± 2.41 71.31 ± 1.44 73.92 ± 1.88 
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ber is limited, which demonstrates that SPLDA is very effective for

the small training sample problem. This is mainly because the pro-

posed SPLDA method can make full use of the spatial consistency

information generated by the SLIC segmentation. It can be ob-

served that SPLDA also performs better than the LPNPE algorithm.

The main reason for this is that SPLDA adopts a shape-adaptive

neighborhood, which can accurately model the local spatial struc-

ture and ensure regional homogeneity. The performance of SSDR is

better than that of SPLDA, due to the simultaneous preservation of

the spatial and spectral similarity during the DR process. 

Similarly, Fig. 6 reports the OAs of the different algorithms us-

ing the KNN classifier, which indicates that the SPLDA and SSDR

algorithms outperform the other methods in each of the dimen-

sions. It should be noted that PCA performs better than LFDA in

some cases, due to the fact that LFDA performs poorly under small

sample numbers. 

The comparison results for the Indian Pines data set obtained

with the SVM classifier in dim = 15 are visually shown in Fig. 7 , in-

cluding the false-color image (a), the corresponding ground-truth

map (b), and the classification images (c)–(k), respectively. It can

be observed that the proposed SPLDA method performs better

than the other compared spectral-based methods, in most land-

over classes, and the SSDR algorithm produces more homogenous

areas and smoother classification maps than the other methods,

especially in the corn-notill, soybean-mintill, and hay-windrowed

classes. To further illustrate the comparison results, the quantita-

tive evaluation results for the OA (%) in dim = 15 for all the meth-

ods are summarized in Table 1 . The results include the average OA,

AA, and kappa coefficient, with the associated standard deviation,
ver 10 runs for each method. The best results for each quality in-

ex are labeled in bold, and the second-best results are underlined

or the KNN and SVM classifiers, respectively. From Table 1 , it can

e observed that the proposed SSDR method yields the best OA,

appa, and AA values in most cases, and the values of the SPLDA

ethod are the second-highest among all the methods, which con-

rms the conclusion that SPLDA and SSDR outperform the other

pectral-based DR methods and the spatial-based method which

onsiders the spatial information based on a fixed neighborhood

indow. The spatial-spectral combined method (SSDR) performs

etter than the spatial-based method (SPLDA), which indicates

hat simultaneously combining the spectral information and spa-

ial context provided by training samples is beneficial to DR. 

.3.2. Pavia university data set 

This section describes the classification results of the different

R methods on the Pavia University data set. For this data set, we

pproximately set the number of superpixels to be 180 0 0 and ran-

omly selected n ( n = 10, 20, 30, 40, 50) samples from each class

s the training set. The remaining samples were used as the test

et. The reduced dimensionality was varied from 5 to 30. 

Figs. 8 and 9 show the OAs with regard to the different reduced

imensions and different sam ple sizes for the all methods with

he SVM and KNN classifiers, respectively. From Fig. 8 , it can be

bserved that, for the SVM classifier, the proposed SSDR method

btains better classification results than the other methods in al-

ost all cases of different dimensions, and achieves the best clas-

ification result around dim 10. SPLDA performs better than the

PNPE method due to the flexibility of the neighborhood preserva-
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Fig. 8. OAs with respect to: (a)–(e) different sizes of training set (10, 20, 30, 40, 50) and different reduced dimensions (from 5 to 30) for the Pavia University data set, 

combined with the SVM classifier. 

Fig. 9. OAs with respect to: (a)–(e) different sizes of training set (10, 20, 30, 40, 50) and different reduced dimensions (from 5 to 30) for the Pavia University data set, 

combined with the KNN classifier. 
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Fig. 10. SVM classification maps of the different methods with the Pavia University data in dim = 10. (a) False-color image of the Pavia University data set (R: 102, G: 56, B: 

31). (b) Ground-truth map. (c) Original (SVM). (d) PCA. (e) LFDA. (f) NWFE. (g) LDE. (h) RLDE. (i) LPNPE. (j) SPLDA. (K) SSDR. 

Table 2 

Classification accuracies of the different DR methods for the Pavia University data set. 

Samples Classifiers Index Original PCA LFDA NWFE LDE RLDE LPNPE SPLDA SSDR 

10 KNN OA 57.56 ± 4.60 57.54 ± 4.59 56.37 ± 4.15 59.05 ± 4.31 64.41 ± 4.79 65.18 ± 4.03 66.07 ± 5.66 68.01 ± 5.46 67.52 ± 5.54 

AA 72.06 ± 2.28 72.02 ± 2.24 65.16 ± 2.92 75.12 ± 2.15 73.83 ± 2.06 77.05 ± 2.20 76.62 ± 2.55 78.29 ± 2.76 79.11 ± 2.42 

Kappa 48.85 ± 4.53 48.82 ± 4.54 46.59 ± 4.84 50.81 ± 4.35 56.12 ± 5.68 57.27 ± 5.69 58.62 ± 6.82 60.83 ± 6.50 60.26 ± 5.93 

SVM OA 64.99 ± 3.04 64.51 ± 2.73 56.02 ± 4.38 66.55 ± 3.38 67.06 ± 3.46 70.09 ± 4.48 73.09 ± 3.77 74.38 ± 3.64 74.67 ± 4.03 

AA 75.67 ± 3.09 75.28 ± 2.81 64.72 ± 2.97 77.75 ± 1.89 73.90 ± 2.29 78.31 ± 2.11 78.89 ± 2.20 79.70 ± 1.49 81.38 ± 1.60 

Kappa 56.77 ± 3.43 56.17 ± 3.03 46.24 ± 4.69 58.72 ± 3.57 58.86 ± 3.51 62.73 ± 4.96 66.37 ± 4.12 67.83 ± 3.97 68.14 ± 4.37 

20 KNN OA 64.82 ± 2.54 64.67 ± 2.54 69.89 ± 2.49 67.23 ± 2.54 72.81 ± 2.28 73.61 ± 2.34 75.63 ± 1.98 78.23 ± 1.64 78.28 ± 2.59 

AA 75.89 ± 0.79 75.76 ± 0.79 78.76 ± 0.75 79.33 ± 1.00 81.42 ± 0.94 82.60 ± 1.13 81.62 ± 1.20 83.97 ± 0.93 85.13 ± 1.08 

Kappa 56.56 ± 2.66 56.39 ± 2.66 62.56 ± 2.68 59.49 ± 2.71 65.98 ± 2.62 66.93 ± 2.65 69.35 ± 2.28 72.46 ± 1.91 72.56 ± 2.96 

SVM OA 77.43 ± 1.93 73.97 ± 2.27 70.96 ± 2.12 75.45 ± 2.97 77.62 ± 2.72 79.57 ± 2.75 78.79 ± 1.13 80.13 ± 2.26 82.53 ± 2.07 

AA 83.19 ± 1.42 81.38 ± 1.48 76.38 ± 1.37 83.45 ± 1.41 82.93 ± 1.69 84.92 ± 1.41 82.90 ± 1.27 84.07 ± 1.22 86.62 ± 1.14 

Kappa 71.15 ± 2.38 67.02 ± 2.55 63.33 ± 2.45 68.96 ± 2.40 71.49 ± 3.23 73.89 ± 2.66 73.05 ± 1.39 75.66 ± 2.68 77.59 ± 2.53 

30 KNN OA 66.11 ± 1.04 65.85 ± 1.05 75.55 ± 1.91 69.69 ± 1.24 77.30 ± 1.84 78.17 ± 1.54 78.88 ± 2.49 82.11 ± 2.06 83.11 ± 1.93 

AA 76.90 ± 0.90 76.71 ± 0.96 82.62 ± 1.12 80.97 ± 1.05 83.99 ± 0.94 84.99 ± 0.71 83.41 ± 1.09 85.98 ± 1.21 87.29 ± 0.97 

Kappa 58.03 ± 1.26 57.72 ± 1.26 69.11 ± 2.37 62.32 ± 1.43 71.25 ± 2.20 72.31 ± 2.17 73.15 ± 2.90 77.07 ± 2.32 78.32 ± 2.01 

SVM OA 80.87 ± 2.19 77.16 ± 1.72 77.80 ± 2.18 78.09 ± 2.11 81.20 ± 2.30 82.81 ± 1.33 82.88 ± 1.51 83.82 ± 1.56 85.54 ± 1.88 

AA 85.25 ± 1.57 83.40 ± 0.98 82.13 ± 1.46 84.05 ± 0.92 85.41 ± 1.21 86.18 ± 1.46 85.32 ± 1.35 86.15 ± 1.60 88.09 ± 1.21 

Kappa 75.41 ± 2.69 70.88 ± 2.06 71.60 ± 2.56 71.99 ± 2.47 75.87 ± 2.78 77.75 ± 1.68 77.98 ± 1.87 79.11 ± 1.96 81.26 ± 2.30 

40 KNN OA 67.73 ± 0.79 67.50 ± 0.70 76.06 ± 1.40 71.40 ± 0.90 77.33 ± 1.26 79.05 ± 1.10 79.73 ± 1.63 82.63 ± 1.13 83.60 ± 0.77 

AA 78.50 ± 0.47 78.28 ± 0.46 84.16 ± 0.89 82.14 ± 0.31 84.94 ± 0.80 85.91 ± 0.60 84.46 ± 0.64 87.11 ± 0.57 88.14 ± 0.52 

Kappa 59.98 ± 0.77 59.69 ± 0.66 69.86 ± 2.37 64.34 ± 0.89 71.41 ± 1.37 73.42 ± 1.26 74.21 ± 1.93 77.78 ± 1.36 78.97 ± 0.94 

SVM OA 82.53 ± 2.56 78.46 ± 2.23 80.19 ± 2.14 79.65 ± 2.59 82.47 ± 1.51 85.30 ± 2.01 83.67 ± 1.04 84.98 ± 1.91 87.17 ± 1.64 

AA 86.76 ± 1.05 84.61 ± 1.14 84.94 ± 0.36 85.77 ± 0.77 86.82 ± 0.62 88.51 ± 0.95 86.49 ± 0.76 87.56 ± 1.13 89.68 ± 0.86 

Kappa 77.54 ± 3.06 72.52 ± 2.65 74.69 ± 2.41 74.05 ± 2.89 77.48 ± 1.80 80.98 ± 1.51 79.00 ± 1.20 80.62 ± 2.29 83.38 ± 2.01 

50 KNN OA 69.54 ± 1.53 69.16 ± 1.48 78.03 ± 1.44 73.62 ± 1.68 79.39 ± 1.31 80.94 ± 0.91 81.17 ± 1.11 84.60 ± 0.73 85.51 ± 1.06 

AA 79.22 ± 1.04 78.89 ± 1.08 85.29 ± 0.71 83.04 ± 0.67 85.85 ± 0.48 86.72 ± 0.25 85.00 ± 0.70 87.99 ± 0.33 89.08 ± 0.44 

Kappa 61.88 ± 1.67 61.41 ± 1.64 72.13 ± 1.83 66.79 ± 1.82 73.79 ± 1.39 75.61 ± 1.00 75.90 ± 1.32 80.14 ± 0.87 81.28 ± 1.27 

SVM OA 83.61 ± 2.42 79.60 ± 1.92 82.70 ± 1.25 80.38 ± 2.82 83.84 ± 1.03 85.76 ± 1.70 84.82 ± 1.50 86.23 ± 1.36 88.40 ± 1.34 

AA 87.83 ± 1.07 85.70 ± 0.90 86.36 ± 1.02 86.50 ± 1.33 87.79 ± 0.69 88.91 ± 0.93 87.60 ± 0.99 89.00 ± 0.69 90.51 ± 0.55 

Kappa 78.86 ± 2.93 73.91 ± 2.27 77.68 ± 1.44 74.91 ± 2.50 79.17 ± 1.24 81.54 ± 2.10 80.43 ± 1.83 82.20 ± 1.66 84.91 ± 1.64 
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tion. SPLDA also outperforms the other spectral-based DR methods,

especially in the case of small numbers of training samples. From

Fig. 9 , it can be observed that, for the KNN classifier, the SSDR al-

gorithm achieves the best OA value, up until the point where the

sample number is larger than 30. This is mainly because the con-
ribution of the label-guided graph is limited when the number of

raining samples is small. 

In order to further show the performance of the proposed al-

orithms, Fig. 10 provides a visual depiction of the classification

aps obtained by the different methods for the Pavia University
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ata set using the SVM classifier in dim = 10. The false-color im-

ge and ground truth are also presented in Fig. 10 . It can be ob-

erved that the proposed SPLDA and SSDR algorithms outperform

he other methods. For the bare soil area, SPLDA performs better

han SSDR, but in the meadows, SSDR performs better than SPLDA.

imilarly, we implemented 10 independent runs with the different

ethods, and the average results of the OA, AA, and kappa values

n dim = 10 are listed in Table 2 . The results of the SVM and KNN

lassifiers without DR are used as the baselines. SPLDA performs

etter than LPNPE, which shows the effectiveness of using SLIC su-

erpixels in the proposed approach. The proposed SSDR algorithm

chieves the best classification performance in terms of OA, AA,

nd kappa coefficient. The classification results indicate that SSDR

ot only explores the spectral similarity by the label-guided graph

ut it also makes full use of the spatial consistency property by

he superpixel-guided graph, to enhance the classification perfor-

ance. 

. Conclusions 

In this paper, we have proposed a spatially regularized DR ap-

roach named SPLDA to preserve the spatial similarity during DR.

urthermore, we have also proposed SSDR to exploit the spatial

nd spectral information concurrently. Specifically, the HSI is first

egmented into adaptive regions by the SLIC superpixel segmen-

ation method, where each superpixel is considered to be homo-

eneous. A superpixel-guided graph is then constructed to cap-

ure the spatial similarity from the superpixels, and a label-guided

raph is learned to explore the spectral similarity. Finally, we com-

ine the superpixel-guided graph and the label-guided graph to

xplore the spatial and spectral similarity simultaneously. The pro-

osed SPLDA and SSDR methods were tested on two HSI data sets,

nd achieved better classification results than the other widely

sed DR algorithms. Our future work will focus on the automatic

election of parameters during feature combination, to further im-

rove the computational efficiency and classification accuracy. 
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